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Abstract8

Batch synchronization has been widely misunderstood as being only needed when variable trajectories9

have uneven length. Batch data are actually considered not synchronized when the key process events do10

not occur at the same point of process evolution, irrespective of whether the batch duration is the same for11

all batches or not. Additionally, a single synchronization procedure is usually applied to all batches without12

taking into account the nature of asynchronism of each batch, and the presence of abnormalities. This13

strategy may distort the original trajectories and decrease the signal-to-noise ratio, affecting the subsequent14

multivariate analyses. The approach proposed in this paper, named Multisynchro, overcomes these pitfalls15

in scenarios of multiple asynchronisms. The different types of asynchronisms are effectively detected by us-16

ing the warping information derived from synchronization. Each set of batch trajectories is synchronized by17

appropriate synchronization procedures, which are automatically selected based on the nature of asynchro-18

nisms present in data. The novel approach also includes a procedure that performs abnormality detection19

and batch synchronization in an iterative manner. Data from realistic simulations of a fermentation process20

of the Saccharomyces cerevisiae cultivation are used to illustrate the performance of the proposed approach21

in a context of multiple asynchronisms.22

Keywords: Batch synchronization, warping information, asynchronism, dynamic time warping, relaxed23

greedy time warping.24

1. Introduction25

In current batch processes, on-line measurements of process variables are usually collected at different26

sampling points for process understanding, optimization and monitoring [1, 2]. Complex physiological27

behavior, operational changes, intrinsic biological variability in microorganisms or seasonal effects cause28

batches to have different duration. In addition, time points at which the biochemical reactions and physical29

activities take place (usually coinciding with process landmarks, such as peaks and valleys) may be shifted30

across batches. Hence, the collected batch trajectories may not only have different lengths but also the key31

process events do not overlap at the same time in all batches [3].32

In this context of asynchronous batches, the application of multivariate projection methods, such as33

Principal Component Analysis (PCA) and Partial Least Squares (PLS), is not feasible. In order to ensure all34

batch trajectories have the same duration and the key process events happen at the same state of evolution,35

the synchronization of batch trajectories need to be always carried out prior to modeling. A number of36

proposals for dealing with the most complex synchronization problems can be found in the literature. These37

approaches can be roughly classified into three categories: i) methods based on compressing/expanding the38

∗Corresponding author
Email address: jogonmar@gmail.com (J.M. González-Mart́ınez)
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raw trajectories using linear interpolation either in the batch time dimension or in an indicator variable39

dimension; ii) methods based on feature extraction; and iii) methods based on stretching, compressing and40

translating pieces of trajectories.41

Within the first category, some authors dealt with the batch alignment issue using simple ideas, such42

as truncating the trajectories of all batches to the shortest batch length, or compressing/expanding the43

trajectories using linear time adjustments by dividing each time point along the trajectory by the time44

at a certain percentage of the end-point [4, 5, 6]. These ideas, although simple, are often inadequate for45

aligning batch trajectories [7]. Nomikos and MacGregor [8] proposed the use of an indicator variable: ”One46

way to handle varying batch times in on-line monitoring is to replace time by another measured variable47

that progresses monotonically in time and has the same starting and ending value for each batch”. Some48

applications of this synchronization approach can be found in [5, 9, 10, 11, 12, 13, 14]. When an indicator49

variable is not available throughout the batch run, but some process variables can be used as an indicator50

at different process stages, the batch synchronization can be performed stage-by-stage [15]. If a suitable51

indicator variable is not available for a given batch processes this type of synchronization cannot be carried52

out and other approaches are required. PLS models between the variable-wise unfolded batch data matrix53

and the local batch time were also suggested to predict the batch ’maturity’ and align accordingly [9, 16].54

Procedures based on features extraction were also proposed for batch process synchronization. Kaitsha55

and Moore proposed a mathematical matched filter to extract key events in batch trajectories in cases where56

they are not known beforehand [17]. More sophisticated approaches are curve registration [18, 19, 20] and57

dynamic locus analysis [21, 22, 23], which identify landmarks or special points that characterize process58

stages and changes (the so-called singular points) in a set of batch trajectories corresponding to process59

variables, and then, the test trajectories are warped based on the reference landmarks. In [24], raw batch60

trajectories are decomposed into approximations and details at different scales using wavelets. Contributions61

from each scale are collected in separate matrices, and data are synchronized at each level using an algorithm62

based on stretching, expanding and translating pieces of trajectories. Then synchronized separate matrices63

are reconstructed to form new synchronized trajectories.64

Other methodologies based on warping techniques, such as Dynamic Time Warping (DTW) and Cor-65

relation Optimization Warping, have been proposed as methods of pattern matching in speech recognition66

[25] and methods to correct peak shifts in chromatographic profiles [26, 27, 28]. In recent years, these67

methods have received much attention in process chemometrics to align and synchronize batch trajectories68

corresponding to process variables [29, 30, 31, 32]. In [29], an end-of-batch version of DTW for batch syn-69

chronization was proposed and some guidelines to carry out the real-time synchronization were presented.70

Nonetheless, this real-time version was proven to be inappropriate for Batch Multivariate Statistical Process71

Control (BMSPC) due to the high false alarm rate [33]. The Relaxed Greedy Time Warping (RGTW) is a72

solution to overcome this problem [33]. A Derivative DTW algorithm (DDTW) was proposed to capture the73

underlying process behavior fingerprinted in the batch trajectories using derivatives. Nonetheless, noisy data74

can severely affect the computation of numerical derivatives [34]. A robust DTW algorithm was proposed75

in [35] that combines a moving window least squares procedure with derivative DTW to avoid singularity76

points and reduce the dependency of the results on the reference trajectory. To deal with the derivatives77

computation problem in noisy data, the Hybrid Derivative Dynamic Time Warping algorithm was suggested78

[34], which combines piecewise-linear approximations of the unsynchronized trajectories and DDTW.79

Much effort has been devoted to overcome the synchronization problem. Nonetheless, none of the pro-80

posals found in the literature takes into consideration abnormalities or the nature of asynchronism that81

may be present in batch data. The existence of faulty batches in the calibration data set may affect the82

accuracy of synchronization parameter estimates and, hence, the synchronization quality. The presence of83

complex asynchronisms producing lack of temporal concurrences also poses a threat to bilinear modeling.84

Four different types of asynchronism can be found: i) batches with equal duration but key process events85

not overlapping at the same time point in all batches (class I asynchronism), ii) batches with different du-86

ration and process pace (class II asynchronism), iii) batches with different duration due to incompletion of87

some batches and key process events overlapping (class III asynchronism); and iv) batches with different88

duration due to delay in the start but batch trajectories showing the same evolution pace after (class IV89

asynchronism). In this context of multiple asynchronisms, applying the same synchronization procedure90
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may harmfully affect the original correlations of the process variables over time, jeopardizing subsequent91

multivariate analysis and the accuracy of monitoring schemes for fault detection.92

In this paper, a novel synchronization approach named Multisynchro is proposed to deal with scenarios of93

multiple asynchronisms in batch processes. The new approach uses the valuable information on the process94

pace of each batch derived from DTW/RGTW-based synchronization (the so-called warping information)95

for two purposes: i) detecting the type of asynchronism of each particular batch, and ii) implementing96

the appropriate synchronization procedure based on the nature of asynchronisms. The new approach also97

includes a procedure that performs abnormality detection and batch synchronization in an iterative way.98

The outline of the paper is as follows. In Section 2, the fundamentals of the DTW and RGTW syn-99

chronization algorithms are explained. An optimization of these strategies that deals with the presence of100

abnormalities to enhance the synchronization quality is proposed. These methods are the core of the novel101

Multisynchro approach that synchronizes batches considering the nature of asynchronisms, which will be102

explained in Section 3. Section 4 presents the material of the research work. Section 5 illustrates i) the103

performance of the novel Multisynchro approach for batch synchronization in scenarios of multiple asynchro-104

nisms and ii) the effect of inappropriate synchronization on the batch trajectories. Finally, some conclusions105

are provided in Section 6.106

2. Batch synchronization107

In this section, the fundamentals of the DTW and RGTW synchronization algorithms are explained. An108

optimization of these strategies that deals with the presence of abnormalities to enhance the synchronization109

quality is proposed. These methods are the core of the novel Multisynchro approach that synchronizes110

batches considering the nature of asynchronisms.111

Let Xn (Kn × J) and Xref (Kref × J) be the matrices containing the data from a n-th and reference112

batch in which the J process variables were collected at Kn and Kref sampling points, respectively. Note113

that all the N calibration batches can be arranged into a three-way array X− (N × J ×Kn). The objective114

of batch synchronization is to synchronize each Xn with Xref guaranteeing the overlap of the key process115

events.116

2.1. DTW/RGTW-based synchronization117

The essence of DTW is to match two multivariate batch trajectories Xn and Xref by finding a minimum118

cost function (or warping path) fTn = {w(1), w(k), ..., w(Kwn
)}, where max(Kref ,Kn) 6 Kwn

6 Kref +Kn.119

Here each w(k) is an ordered pair [i(k), j(k)] indicating that the i -th and j -th sampling points that belong120

to Xn and Xref , respectively, are synchronized. The synchronization is assessed with respect to a local cost121

function d(i, j) weighted by the nonnegative diagonal matrix W (J × J). This matrix reflects the relative122

importance of each process variable in the batch synchronization. The resulting values are represented as a123

local distance Kn×Kref matrix or grid, which assigns a matching cost for synchronizing each possible pair124

of sampling points from the test and reference batches. Several constraints are defined to restrict the search125

of the warping path, namely a band fit to the batch variability that limits the search space of such path, and126

local constraints (or predecessors), which restricts the warping function as monotonic and continuous. In127

addition, a cumulative weighted distance matrix D(fn) is assessed by estimating the cumulative matching128

costs of each of the allowed warping paths fn (also called warping profile). The optimal warping path f∗n is129

assessed by obtaining the path that minimizes the cumulative distance from a start point, which can be fixed130

(the initial ordered pair [1, 1]) or relaxed (e.g. the best matching between the first point of the reference131

batch and the test batch, s∗) to an end point, which can be likewise fixed (the final ordered pair [Kref ,Kn])132

or relaxed (e.g. the best matching between the last point of the test batch and the reference batch, e∗). As133

a result of this synchronization procedure, a data matrix X̃n (Kref × J) containing the synchronized batch134

trajectories is obtained.135

The RGTW algorithm [33] builds up a piecewise solution following a greedy optimization approach,136

so that each time the best local synchronization improvement is incorporated to the global synchronization137

solution. This synchronization procedure is based on the proposal of Kassidas et al. [29] but synchronization138
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is carried out within a moving window ζ of defined width, which is optimized by cross-validation. Further139

details can be found [33].140

The warping profiles obtained from synchronization are composed of a set of different transitions at each141

sampling point, i.e. vertical, horizontal and diagonal steps. Based on the number of the different transitions142

the warping path contains, conclusions regarding the performance of the different process stages can be143

drawn. Let us assume the test and reference batches are located on the x -axis and y-axis, respectively. An144

excessive number of vertical transitions in the warping profile means that the test batch needed less time145

than the reference batch to completion. In contrast, an excessive number of horizontal transitions is related146

to a slow process pace of the test batch in comparison to the reference batch. To correct these differences147

in the process pace, the DTW/RGTW algorithm expands and compresses the pieces of trajectories in148

such a way that the key process events are synchronized across batches. Note that the warping profiles149

contain valuable information about the duration of the process substages, which may be associated with150

abnormalities occurring in the process and/or the quality of the final product. Hence, the use of the warping151

information for process monitoring is highly recommended [15, 33, 36].152

2.2. Iterative batch synchronization/abnormalities detection procedure153

Batch synchronization needs to be implemented taking into account the possible presence of abnormalities154

in batch data. The existence of faulty batches in the calibration data set may yield inappropriate synchro-155

nizations since possible artefacts may be introduced due to abnormalities. For instance, batch trajectories156

that break the correlation structure usually contain different shapes in comparison to batch trajectories run157

under Normal Operating Conditions (NOC). It may affect the estimation of the weight matrix W and the158

synchronization quality, leading to synchronized batch trajectories with artificial shapes at different time159

periods. To overcome this problem, an iterative synchronization/abnormalities detection procedure is pre-160

sented. The aim of this new procedure is to synchronize each batch against a reference batch in such a way161

that possible abnormalities present in batch data do not affect the synchronization quality. The main steps162

of the algorithm are (see Figure 1):163

i. Synchronize all the batches contained in the starting three-way matrix X using the DTW algorithm. For164

this purpose, select a reference batch Xref and a criteria to weight the process variables. The algorithm165

returns the synchronized three-way batch data array X̃− (N × J ×Kref ) and the weigth matrix W.166

ii. Preprocess batch data by trajectory centering and scaling using the estimated matrices of averages Ξ167

(Kref × J) and standard deviations Ω (Kref × J)1.168

iii. Fit a PCA model on the batch-wise unfolded and preprocessed data matrix satisfying the following169

equation: X̃
′

= TA ·PT
A + E, where A is the number of PCs extracted2.170

iv. Design a control chart based on the Squared Prediction Error (SPE) statistic. Its control limit SPElim,α171

is estimated from the synchronized calibration batch data at (1-α) confidence limit.172

v. Off-line post-batch monitor all the synchronized calibration batches for fault detection.173

v.1 Compute the SPE statistic for each batch and sort out the corresponding values in ascending174

order.175

v.2 Calculate the acceptable number of batches R that can exceed the control limits at (1 − α)176

confidence level by chance as α times the number of calibration batches.177

1This preprocessing approach is selected due to suitability for batch process modelling and monitoring [37, 38].
2The interest of building a PCA in this work is to design a monitoring scheme for fault detection. In process monitoring, the

interest is in the distributions in latent variables and residuals, which are those used to estimate the control limits for incoming
data. This should be taken into consideration to select A [? ].
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Figure 1: Flow diagram of the iterative batch synchronization/abnormalities detection procedure. Note that
X̃B is the three-way array containing the synchronized faulty batches isolated at the l-th iteration whereas
XB is the three-way containing all the raw faulty batches isolated in the L iterations of the iterative
procedure.

v.3 If the number of batches exceeding SPElim,α Nf is greater than R, the first Bl = Nf − R178

synchronized batches with the highest SPE values are treated as faulty batches. In any case those179

batches whose SPE values are beyond λ times SPElim,α are also considered as faulty. To isolate these180

faulty batches for subsequent synchronization different from that performed on NOC batches, arrange181

them into the three-way array X̃B (Bl×J ×Kref ), recover their raw trajectories and add them to the182

three-way array XB (BL× J ×Kb), which contains the rest of raw faulty batches isolated in previous183

iterations.184

v.4 The remaining batches are considered as NOC and their trajectories are arranged into the three-185

way array X̃G (G× J ×Kref ).186

vi. If one or more batches were detected as abnormal in the off-line post-batch monitoring at the l-th187

iteration, compute the repeat loop (i)-(v) with the new calibration batch data array X = XG, where188

XG is a (G× J ×Kg) three-way array containing the raw batch trajectories of G NOC batches. .189

vii. If no batch was detected as abnormal in the off-line post-batch monitoring at the l-th iteration, syn-190

chronize the faulty batches and merge the data sets.191

vii.1 If no batch was detected as abnormal in the first iteration, the iterative procedure ends up.192

vii.2 If some batches were detected as abnormal in the off-line post-batch monitoring after L iterations,193

synchronize each faulty batch Xb from the three-way faulty batch array XB . For this purpose, the194
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DTW algorithm is applied using the reference batch Xref and the weighting matrix W that were195

assessed in the NOC batch synchronization in Step (i) at the last iteration. Once the synchronized196

three-way faulty batch array X̃B is available, merge it with the three-way array of NOC batches X̃G197

into the three-way array X̃.198

As output, the iterative batch synchronization/abnormalities detection procedure returns: the three-way199

synchronized batch data array X̃, the reference batch Xref ; the matrices of average trajectories Ξ and200

standard deviation trajectories Ω; the weighting matrix W assessed in the synchronization procedure;201

and, the score TA and loading PA matrices obtained from the PCA model on the batch-wise unfolded202

preprocessed matrix at the last iteration.203

3. Multisynchro approach for batch synchronization204

The multisynchro approach is devoted to synchronize the key process events ensuring the same evolution205

across batches, no matter the type of asynchronism present in batch data. The algorithm takes as inputs206

the three-way array arranging the calibration batches, the technique to weight the process variables and the207

strategy to select the reference batch. The procedure returns the synchronized batch data array and the208

warping time profiles that indicate how to warp the batch trajectories to make them synchronized.209

The multisynchro algorithm is composed of a high-level and low-level routine (see Figure 2). The high-210

level routine is aimed at recognizing the different types of asynchronous trajectories for the subsequent batch211

classification as function of the nature of asynchronism (see Figure 2(a)). The low-level routine is in charge212

of synchronizing the variable trajectories of each one of the batches with a specific procedure based on the213

type of asynchronism (see Figure 2(b)). In the following, the algorithm is described.214

3.1. Asynchronism detection215

The high-level routine is divided into two steps (see Figure 2(a)). The first step is devoted to recognize216

the different types of asynchronous trajectories, which is carried out by using the warping time profiles217

derived from a preliminary synchronization as follows:218

i. Select a reference batch Xref from the three-way batch data array X.219

ii. Synchronize all batches using the DTW algorithm giving the same weight to the process variables that220

contain valuable information for synchronization (e.g. maximum and minimum values that define the221

features of the multivariate trajectories and process stages). Those variables that are either showing222

constant values in most of production time or discarded beforehand by prior knowledge are constrained223

in the synchronization with a null weight. The reason why certain process variables are given the same224

importance is to mitigate the distortion of the warping profiles in the presence of different types of225

asynchronisms. The algorithm returns a three-way synchronized batch data array X̃ and a three-way226

array F (N × 2×Kwn
) containing the the warping paths for the N batches.227

iii. For each warping time profile fn from the three-way array F:228

iii.1 Count the number of consecutive horizontal transitions denoting the number of compressions229

carried out by the synchronization algorithm at the first time period of the n-th batch as follows:230

hn =

Kwn∑
k=1

(j(k) = 1)

iii.2 Count the number of consecutive vertical transitions denoting the number of expansions carried231

out by the synchronization algorithm at the last time period of the n-th batch as follows:232

vn =

Kwn∑
k=1

(i(k) = Kn)
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These features of the warping time profiles are used to detect the different types of asynchronisms pre-233

sented in data. In the case of class III asynchronism, incomplete batches are associated with warping profiles234

showing an excessive number of vertical transitions at the last time period of the runs. These transitions235

are related to expansions that the DTW algorithm should carry out for synchronization. Batches with a236

shift at the start of the run are associated with warping profiles that contain a high number of horizontal237

transitions at the same time period (asynchronism IV). These transitions are related to compressions that238

the DTW algorithm should carry out for synchronization. Finally, in class I and class II asynchronism, the239

resulting warping profiles show a reasonable combination of horizontal and vertical transitions throughout240

the batch run.241

The second step of the high-level routine (see Figure 2(b)) is aimed at classifying each batch by the242

type of asynchronism and arranging them into different data sets. For this purpose, the features of the243

warping time profiles are used to distinguish between asynchronisms that can be dealt with conventional244

synchronization techniques and those that need more sophisticated procedures. The formers are class I245

and class II asynchronisms, which require a combination of vertical and horizontal transitions over time to246

align the key process events. In contrast, trajectories affected by the latters, i.e. class III and class IV247

asynchronisms, produces a larger number of vertical transitions at the last process stage and larger number248

of horizontal transitions at the start of the batch than normal, respectively. In order to identify the type of249

asynchronism of each batch, thresholds ψv and ψh are calculated as a fraction κ of the interquartile range of250

both the vertical transitions at the last time period v and the horizontal transitions at the first time period251

h estimated for all the synchronized batches, respectively3.252

i Repeat for all batches:253

ii.1 If the number of compressions hn and expansions vn are less than their respective thresholds,254

arrange the n-th batch into the three-way array X1, which contain batches affected by class I and II255

asynchronisms.256

ii.2 If only the number of expansions at the end of the batch vn is greater than or equal to the threshold257

ψv, arrange the n-th raw batch into the three-way array X2, which contain batches affected by class258

III asynchronism.259

ii.3 If only the number of compressions at the start of the batch hn is greater than or equal to threshold260

ψh arrange the n-th raw batch into the three-way array X3 by class IV asynchronism.261

ii.4 If the number of compressions hn and expansions vn are greater than or equal to their respective262

thresholds, arrange the n-th raw batch into the data matrix X4 by class III and IV asynchronisms.263

3.2. Specific batch synchronization264

The multisynchro approach continues the execution synchronizing the different data sets with different265

types of asynchronism:266

i Synchronize the three-way batch data array X1 using the iterative synchronization based on the DTW267

algorithm explained in Section 2.2. This procedure consists of synchronizing batch trajectories in such268

a way that possible abnormalities present in batch data do not affect the synchronization quality. The269

procedure returns the matrices of average trajectories Ξ and standard deviation trajectories Ω, the270

weighting matrix W, the loading vector PA obtained from the PCA-based modelling, and the three-271

way array X̃− that arranges the synchronized NOC and faulty batches.272

ii Synchronize the three-way batch data array X2 using the DTW algorithm with the relaxed end point273

constraint using those parameters estimated in the iterative synchronization. This version of the DTW274

algorithm synchronizes batches against a segment of the reference batch limited by the first point and275

3This measure of statistical dispersion is used due to its robustness to outliers and extreme values. Even though κ is a
heuristic value dependent on the distribution of the transitions, it is recommended that κ does not exceed 0.5.
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the best matching end point e∗ instead of the reference as a whole. The algorithm returns the batch276

trajectories synchronized till the best end point of each batch X̃2. The missing part of each of batches277

are imputed using the Trimmed Score Regression method [40]. The procedure returns the three-way278

array X̃2 containing the synchronized batch trajectories.279

iii Synchronize the three-way batch data array X3 using the DTW algorithm with the relaxed start point280

constraint and the parameters calculated in the iterative synchronization. This version of the DTW281

algorithm synchronizes segments of batches against a reference batch. The segments are limited by the282

best matching start point s∗ of each batch with the first point of the reference, and their last point.283

The procedure returns the three-way array X̃3 containing the synchronized batch trajectories.284

iv Synchronize the three-way batch data array X4 using the DTW algorithm with the relaxed start and285

end point constraint using those parameters estimated in the iterative synchronization. The procedure286

returns a three-way array X̃4 containing the synchronized batch trajectories.287

At this point, it is worth emphasizing that the iterative synchronization/abnormalities detection proce-288

dure is only performed when batch data are affected by class I and class II asynchronisms. In this case,289

occurrences at unrelated times are caused by external and/or internal process factors that can be straight-290

forwardly coped with synchronization methods such as DTW or RGTW. The detection of abnormalities in291

these type of batches is crucial to obtain the correct parameters both for the synchronization of the remain-292

ing batches (reference batch Xref and the weighting matrix W) and for the missing trajectory imputation293

(matrices of average trajectories Ξ and standard deviation trajectories Ω, and the loading matrix PA). The294

detection of disturbances in the rest of batches is carried out jointly with those already signaled as NOC in295

the subsequent multivariate analysis.296

After synchronizing batch data using Multisynchro, all the resulting submatrices need to be merged into297

a three-way array X̃ (N × J ×Kref ) for subsequent bilinear process modeling. Even though some batches298

may have been detected as abnormal in the iterative synchronization procedure, they are not discarded299

for modeling. The reason is that these batches are a valuable source of information. In addition, the300

warping profiles obtained in each one of the specific synchronizations are added as a new variable into the301

synchronized three-way array X̃− for monitoring purpose.302

The real-time application of the Multisynchro approach is straightforwardly done by using the RGTW303

algorithm instead of the DTW algorithm. For off-line applications, DTW is preferred since it provides us304

with the optimum global solution. However, if the main goal is to design a monitoring scheme for real-time305

application, the RGTW algorithm is required. For further details on its implementation, readers are referred306

to [33].307

4. Material and methods308

Two data sets are generated based on the biological model of the aerobic growth of S. cerevisiae on309

glucose limited medium [41]. For this purpose, the simulation scheme designed using Simulink for Matlab310

release 2010a (The MathWorks, Inc), available in the MP toolbox [42]) is used. In particular, data for 40311

batches and 10 batches run under normal operating conditions -processed with the nominal values of the312

internal kinetic constants [41]- are simulated for data set #1 and #2, respectively. Measurements belonging313

to ten process variables are collected every sampling time over all batches: concentrations (glucose, pyruvate,314

acetaldehyde, acetate, ethanol and biomass), active cell material, acetaldehyde dehydrogenase (proportional315

to the measured activity), specific oxygen uptake rate and specific carbon dioxide evolution rate. The316

original time of processing from simulation is also added to the batch data matrix. In order to make the317

simulation realistic, gaussian noise of low magnitude in the initial conditions (10%) and measurements (5%)318

are introduced. In addition, the intrinsic biological variability of a population of the microorganism is taken319

into account in the simulation. As a result, batches with different duration and evolution pace are obtained.320

At the end of the simulation, the three-way arrays X1 (N1×J×Kn1) and X2 (N2×J×Kn2) are returned,321

where Kn1 and Kn2 are the different sampling points at which the measurement of J = 11 process variables322
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were measured in N1 = 40 and N2 = 10 batches, respectively. The total length of batches corresponding to323

the first data set varies from 172 to 330 data points (i.e. Kn1 ∈ [172, 330]), and in the second data set from324

173 to 294 data points (i.e. Kn2
∈ [173, 294]).325

The first data set is synchronized by using the DTW algorithm. For that, batch #12, the closest one326

to the median length from the first data set with Kref = 209 sampling points, is selected as reference.327

The process variables are equally weighted to get a non-optimized synchronization, where the key process328

events are not completely aligned. The rest of conditions and constraints are set according to [29]. After329

synchronization, a three-way array X̃1 (N1 × J ×Kref ) is obtained. The second data set is synchronized330

by using the DTW algorithm using batch #10 with Kref = 209 sampling points as reference with the331

aforementioned parameters and constraints. The resulting three-way array X̃2 (N2 × J ×Kref ) is derived.332

Table 1: Batch data composing the four data sets with different asynchronisms.

Asynchronism case Batch data Explanatory text

#1
X̃−

(1) ⊆ X̃−
1
, N

(1)
1 = 10 Random cut sampling point of batches:

#184, #193, #183, #173, #168, #141, #156, #185, #192 and #184.

X̃−
(2) ⊆ X̃−

1
, N

(2)
1 = 30 No data manipulation

#2
X̃−

(1) ⊆ X̃−
1
, N

(1)
1 = 10

Random length of shift for batches:
#2, #5, #7, #11, #13, #14, #22, #23, #28 and #37.

X̃−
(2) ⊆ X̃−

1
, N

(2)
1 = 30 No data manipulation

#3
X−

(1) ⊆ X−
1
, N

(1)
1 = 10 Cut sampling point of each batch based on those set in case #1:

#174, #171, #161, #158, #173, #128, #156, #169, #202 and #151

X−
(2) ⊆ X−

1
, N

(2)
1 = 30 No data manipulation

#4
X̃−

(1) ⊆ X̃−
1
, N

(1)
1 = 30 No data manipulation

X̃−
(2) ⊆ X̃−

2
, N

(1)
2 = 10 No data manipulation

Four different batch data sets with different patterns of asynchronism are created from the original and333

synchronized batch data (see Table 1). The resulting asynchronous batches are depicted in the acetate334

concentration variable in Figure 3. The first asynchronism case consists of a set of batch trajectories with335

different length due to incompletion of the batch run and key process events overlapping across batches336

(see Figure 3(a)). For the generation of this type of asynchronism, N
(1)
1 = 10 batches randomly selected337

from X̃1 are manipulated to have different length. Ten different end points are randomly generated and the338

batch trajectories corresponding to the N
(1)
1 batches are subsequently cut to these points (see case #1 in339

Table 1). The remaining N
(2)
1 = 30 batches are arranged jointly with the N

(1)
1 incomplete batches into the340

three-way array Xc#1 (N1×J×Kn1
). In the second case of asynchronism, batches have different length due341

to delay in the measurement collection but their trajectories show the same evolution pace over all batches342

(see Figure 3(b)). To generate this type of asynchronism, the N
(1)
1 batch trajectories are manipulated in the343

following way. Firstly, the duration of the delay for each batch is randomly generated in the range [1, 50]344

sampling points. Secondly, data are generated for each one of the J process variables by following a normal345

distribution with mean and variance calculated in the first 5 sampling points from the start of the batches346

(see case #2 in Table 1). Finally, these measurements are added to each process variable and the resulting347

batch trajectories are arranged with the N
(2)
1 batches into the three-way array Xc#2 (N2×J×Kn2

). In case348

#3, the batch trajectories show not only different duration due to incompletion of batches but also the key349

process events do not overlap at the same batch time across batches (see Figure 3(c)). For the generation350

of these asynchronism patterns, the N
(1)
1 raw batch trajectories are again manipulated. The cut points351

generated in case#1 in the domain of the synchronized time are chosen and their corresponding matching352

point in the actual batch time is reconstructed by using the warping information (see case #3 in Table 1).353

Afterwards, the N
(1)
1 raw batch trajectories are cut to these points. Finally, these batch data are arranged354

with the remaining N
(2)
1 raw batches into the three-way array Xc#3 (N3×J ×Kn3). Concerning the fourth355

case of asynchronism, the batch trajectories have the same length but the evolution pace is different among356

batches (see Figure 3(d)). For this case, the synchronized batch trajectories from X̃1 and X̃2 are arranged357
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into the three-way array Xc#4 (N4 × J ×Kref ). The final data sets containing the four different types of358

asynchronism are available in the Supporting Information.359
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Figure 3: Trajectories of the process variable acetate concentration corresponding to 40 NOC batches in four
different scenarios of asynchronism: a) case #1: different batch duration produced by incomplete batch runs
and key process events overlapping at the same sampling point across batches; b) case #2: different batch
duration produced by a delay in measurements collection (shift) and their trajectory profiles show the same
evolution pace over all batches; c) case #3: different batch duration produced by natural variability and
incomplete batch runs, and key process events not overlapping at the same sampling point across batches;
and d) case #4: equal batch duration and key process events not overlapping at the same sampling point in
the last process stage across batches. The batch trajectories with different asynchronism patterns for each
scenario are distinguished by black and grey lines.

5. Results360

The objective of this section is to illustrate i) the performance of the novel Multisynchro approach for361

batch synchronization in scenarios of multiple asynchronisms and ii) the effect of inappropriate synchroniza-362

tion on the batch trajectories.363

Batches with four different types of asynchronism (see Table 1) are synchronized by using the Multisyn-364

chro approach. The high-level routine is executed for asynchronism detection. As a result of this step, a set365

of 40 warping profiles for each scenario of asynchronism is derived (see Figure 4). Looking at these profiles,366

in which every action taken by the synchronization algorithm is fingerprinted, insight into the nature of367

asynchronism present in batch data can be obtained.368
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Figure 4: Warping information derived from the DTW-based synchronization of the raw batch trajectories
for each one of the asynchronism scenarios: (a) case #1, (b) case #2, (c) case #3, and (d) case #4. The batch
synchronization was performed weighting each process variable equally. The warping profiles belonging to
batches with different asynchronism patterns for each scenario are distinguished by black and grey lines.

12



In cases #1, #2 and #4, the warping profiles belonging to the 30 out of 40 batches (see grey lines in369

Figure 4(a), Figure 4(b) and Figure 4(d), respectively) almost follow the main diagonal. Note that these370

batches have equal duration and apparently their key process events overlap at the same sampling points371

across batches (see Figure 3(a), Figure 3(b) and Figure 3(d), respectively). Nonetheless, the slight devia-372

tions observed from the diagonal profile denote that even though most of the batches have equal duration,373

the main events are not perfectly synchronized. This supports the claim that the batch synchronization is374

required even when the variable trajectories show the same evolution pace. Concerning the warping pro-375

files corresponding to the rest of batches (see black lines in Figure 4), a different asynchronism pattern is376

recognized in each case.377

In Figure 4(a) and Figure 4(c), 10 out of the 40 warping profiles (black lines) show an excessive number of378

vertical transitions in comparison to the rest (grey lines). The difference between both cases is that the batch379

trajectories in the latter are not synchronized from the beginning (see the warping profiles notably deviating380

from the main diagonal in Figure 4(c)). This pattern is directly related to the presence of batches that were381

not totally completed. In common practice, these incomplete batches are usually taken into consideration382

for batch synchronization, causing severe and undesirable changes in the profiles of the process variables.383

To illustrate the effect of applying a general synchronization approach in these batches, the three-way batch384

data array Xc#3 is synchronized by using the DTW algorithm in a regular way. Also, the low-level routine385

of the Multisynchro approach is applied on the raw batch trajectories for comparison purpose. For the sake386

of simplicity, batch data corresponding to case #1 are not used since it is a particular case of case #3. The387

outcomes of the application of both synchronization procedures are illustrated in Figure 5 by showing two388

out of the 11 registered process variables.389
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Figure 5: Batch trajectories belonging to the process variables specific oxigen uptake rate (a) and specific
carbon dioxide evolution rate (b) after synchronization. Black lines represent trajectories synchronized by
using the DTW algorithm without taking into account the type of asynchronism and grey lines those batch
trajectories synchronized by the Multisynchro approach.

When the batches are not completed, the DTW algorithm correctly synchronizes the batch trajectories390

from the initial point (1, 1) to the optimum last matching point (kref ,Ki) (the last closest point of the391

black lines to the diagonal profile in Figure 4(c)). From the (kref + 1)-th to the Kref -th sampling point of392

the reference batch, the last point of the i-th batch is matched, leading to the vertical transitions observed393

(see Figure 4(c)). This would lead to expansions of the batch trajectories, i.e. the addition of replicated394

values of the Ki-th sampling point in the i-th batch. Consequently, flat profiles in the process variables (i.e.395

replicated values of the last actual value) are introduced (see Figure 5). This is an artifact since the batches396

were not actually finished and the remaining trajectory till completion is computed in an inappropriate way.397

In addition, these inaccuracies are inherited in the synchronization of that stage. Note that when a batch is398
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material) and Variable #8 (acetaldehyde dehydrogenase)

Figure 6: Comparison of the standard deviation vectors obtained from batch data synchronized by using
the DTW algorithm without taking into consideration the asynchronous patterns from case#3 (red empty
circles line) and by using the Multisynchro approach (black stars line).

finished earlier than the historical batches, the addition of artifacts in data may be higher. This would cause399

a possible change of the trajectory profile. In the batch data simulated, the largest cut was approximately400

60 sampling points. As can be observed in Figure 5, it produces changes in the shape of the profiles in the401

second half of the batch runs and, consequently, in the normal process pace.402

The higher the addition of artifacts, the higher the uncertainty inherited. This variability may severely403

affect the interpretation of the subsequent multivariate statistical model and, therefore, the performance of404

the monitoring scheme. An indicator of this is the variability of the resulting s ynchronized batch trajectories405

around their mean trajectory. This can be measured by the standard deviation vector after the average mean406

is subtracted and the resulting batch data is scaled to unit variance at every sampling point (the so-called407

Trajectory centring and scaling). The lower the difference among standard deviation vectors, the higher the408

synchronization quality.409

In order to study the improvement reached by the application of the Multisynchro approach versus410

traditional synchronization policies (DTW-based synchronization applied to all batches) in case #3, the411

standard deviation vectors of the corresponding synchronized batch trajectories are computed and shown412

in Figure 6. Figure 6(a) reveals that when the incomplete batches are treated separately from the rest in413

the batch synchronization, the resulting standard deviation values are lower (black stars lines) than for the414

classical approach (red empty circles lines). These differences are more prominent in Variables #5, #6,415

#9 and #10 (see trajectories of Variables #9 and #10 in Figure 5), in particular at the last stage of the416

process (last 60 sampling points from the batch runs), where somes batches are incomplete or cut. Even417

though the standard deviation values seem to be similar for the rest of variables, these differences are also418

observed at the same batch time period but at less extent (see Figure 6(b) for Variables #7 and #8). This419

is a clear indicator that synchronizing the batch trajectories without taking into consideration this type of420

asynchronism seriously affects the resulting trajectories, decreasing the signal-to-noise ratio.421

Concerning the case #2, 10 out of 40 batches (those at which a shift type asynchronism was introduced)422

show a diagonal warping profile that is parallel to the main diagonal. This pattern is characteristic in the423

cases where similar values of the J process variables are registered at the start of the batch. It leads to an424

excessive number of horizontal transitions in the synchronization, as can be seen in the blue dashed rectangle425

in Figure 4(b). The higher the duration of the shift from the start, the higher the number of horizontal426

transitions in the warping profile. In this case, the DTW algorithm shrinks the corresponding batches at427

that time interval by averaging the measurements of the J process variables. Note that this compression428

procedure needs to be done carefully since the presence of severe artifacts in these starting periods may affect429
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Figure 7: Batch trajectories belonging to the process variables specific oxigen uptake rate (a, b) and specific
carbon dioxide evolution rate (c, d) without applying any synchronization (a and c, respectively) and
applying the Multi-sinchro approach (b and d, respectively). The black lines in (a) and (c) represent the
raw trajectories belonging to 10 out of 40 batches with the case #4 asynchronism embedded.

the synchronization quality. To avoid this problem, the Multisynchro approach performs the synchronization430

from the optimum match point at the start of the batch till the end. Hence, the resulting warping profiles431

do not show these horizontal transitions since no compression is carried out (not shown).432

As was explained, there is a wrong conception about the importance of asynchronism. When some key433

process events are not totally aligned, regardless of the batch time duration, the batch trajectories need434

to be synchronized. This is clearly shown in case #4 represented in Figure 3(d). As can be seen, the435

acetate concentration trajectory shows that the second half of the batch run (from the 120th sampling point436

onwards) has a different pace for the two groups of batches, denoted as black and grey lines. From the start437

to the 90th sampling point, the main process phenomena apparently occur at the same time point across438

batches. In order to ensure that the key process events are actually synchronized, batch synchronization439

should be applied to batch data. In Figure 4(d), the resulting warping profiles from the synchronization440

at the high-level step are depicted. As can be seen, there are two groups of profiles clearly distinguished,441

those corresponding to the 10 batches where the different process pace was forced (black profiles) and the442

rest of batches (grey lines). Looking at the profiles corresponding to the 10 batches with asynchronism,443

one can observe two main time periods of large deviation from the main diagonal: from the 75th to the444

100th sampling point and from the 120th to the end of the batch, the deviation being smaller in the445
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former than in the latter. In both time periods, these warping profiles have a higher number of vertical446

transitions than horizontal transitions. This is the reason why these warping profiles are beyond the main447

diagonal. It indicates that the batches with asynchronism had slower process pace than the rest. Hence,448

the synchronization algorithm needs to expand the corresponding batch trajectories at the aforementioned449

batch time periods.450

In case #4, batch synchronization is seldomly applied because batches have already the same duration.451

There is commercial software for batch process monitoring, e.g. SIMCA Release 13.0.3 [43], that only demand452

the synchronization of the batch trajectories when they have different length4 In order to emphasize the453

importance of this step, the raw batches trajectories Xc#4 are compared with those obtained from the batch454

synchronization by using the Multisynchro approach. For comparative purposes only two process variables455

are illustrated (see Figure 7). As can be observed, the raw trajectories of the process variable specific oxygen456

uptake rate (see Figure 7(a)) and specific carbon dioxide evolution rate (see Figure 7(c)) belonging to 10457

out of the 40 raw batches (black lines) differ with those corresponding to the rest of batches (grey lines).458

Mainly, these differences are shown at the last stage of the process, from the 120th sampling point onwards.459

This reflects that the fermentation at the second half of the process took less time than in the rest of the460

batch trajectories. Hence, the synchronization of this stage is needed for subsequent analysis. Once the461

Multisynchro approach is applied to batch data, the resulting 40 profiles not only have equal length but also462

the segments of profile corresponding to the last process stage overlap across batches (see the synchronized463

trajectories of the process variables specic oxigen uptake rate and specic carbon dioxide evolution rate in464

Figure 7(b) and Figure 7(d), respectively).465

Again, the standard deviation vector is estimated from the raw and synchronized batch data to study466

the improvement achieved when the Multi-Synchro approach is applied in comparison to take no action467

for synchronization (see Figure 8). If the batch trajectories are not synchronized, the standard deviation468

vector derived contains more variability (see red empty circles line in Figure 8(a)) in comparison to that469

derived from the data synchronized with the Multisynchro approach (see black stars line in Figure 8(a)).470

These differences are more prominent in Variables #5, #6, #9 and #10 (see trajectories of Variables #9471

and #10 in Figure 7), but also existent in the rest of process variables (see Figure 8(b)). In this case,472

these differences are mainly found between the 120th onwards, time period at which the batch profiles are473

clearly not synchronized. Note that the variation from the main trajectory is approximately 8 times higher474

when the key process events are not aligned in comparison to when batch data are synchronized with the475

Multisynchro approach. This again supports the idea that the type of asynchronism needs to be taken into476

consideration in batch synchronization, not only to focus the multivariate statistical anaylsis on the same477

point of process evolution but also to reach better synchronization quality.478

6. Conclusions479

This paper addresses the problem of batch trajectories with multiple types of asynchronism. Prior to480

bilinear batch modeling, batch trajectories must be synchronized in such a way that not only equal batch481

length is ensured, but also the key process events overlap at the same batch time points in all batches. Even482

though batch profiles show similar shape and equal length, batch synchronization needs to be always carried483

out.484

The application of the same synchronization procedure to batches with asynchronisms of different nature485

may cause the addition of extreme artifacts, affecting seriously the synchronization quality. Based on the486

original DTW and RGTW algorithms, a novel synchronization approach called Multisynchro that takes487

into consideration the multiple asynchronisms present in batch data is proposed. The new proposal is488

composed of two routines. The first one (high-level routine) is devoted to detect the different patterns of489

asynchronism of each particular batch based on the warping information derived from the Relaxed Greedy490

4The main synchronization procedure used in SIMCA Release 13.0.3 is the called the time linear expanding/compressing
(TLEC)-based method, which is based on linearly expanding and/or compressing pieces of variable trajectories in the local
batch time dimension [44]. In case the differences in batch length is greater than 20%, a maturity variable is used as the basis
of batch synchronization instead of the local batch time [44].
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Figure 8: Comparison of the standard deviation vectors obtained from raw batch data from case#4 (red
empty circles line) and from synchronized bata data derived from the Multi-sinchro-based synchronization
(black stars line).

Time Warping (RGTW) or Dynamic Time Warping (DTW). The second one (low-level routine) performs491

the batch synchronization using specific procedures based on the nature of the asynchronism. The new492

approach also includes a procedure that performs abnormality detection and batch synchronization in an493

iterative way. This avoids batch abnormalities to affect synchronization quality. The multisynchro approach494

outperforms the standard approach of applying the same synchronization procedure, no matter the type of495

batch asynchronism.496

The conclusions drawn in this paper are in line with those derived from the comparative study performed497

in [45]. Inappropriate synchronization affects not only the quality of batch synchronization, but also the498

subsequent steps of bilinear modeling. When the key process events do not overlap at the same point of499

process evolution ensuring the same process pace in all batches, the capability of monitoring schemes for500

fault detection is dramatically reduced. The novel Multisynchro algorithm is a promising synchronization501

technique that mitigates the influence of multiple asynchronisms on the batch modeling cycle.502
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APPENDIX: LIST OF SYMBOLS517

α confidence level used to estimate the limits of SPE control chart.
h (N × 1) array containing the number of consecutive compressions performed by the synchro-

nization algorithm at the first time period in N batches.
v (N×1) array containing the number of consecutive expansions performed by the synchronization

algorithm at the last time period in N batches.
κ heuristic fraction used to estimate the threshold.
ψ threshold used to discriminate among types of asynchronisms.
Ξ (Kref × J) matrix of averages (i.e. average trajectory of each of the J process variables).
Ω (Kref×J) matrix of standard deviations of J process variables estimated at each Kref sampling

points.
fn (Kwn × 2) one of the possible warping paths that can be derived from the DTW/RGTW-based

synchronization.
f∗n (Kwn

× 2) optimum warping paths derived from the DTW/RGTW-based synchronization.
F (N · 2 ·Kwn

) three-way array containing the warping paths for N batches.
d (Kref ×Kn) local distance matrix calculated in the DTW/RGTW-based synchronization.
D (Kref ×Kn) cumulative weighted distance matrix calculated in the DTW/RGTW-based syn-

chronization.
e∗ best matching between the last point of the test batch and the reference batch.
E (N × JKref ) residual matrix.
PA (JKref ×A) loading matrix.
s∗ best matching between the rst point of the reference batch with the test batch.
TA (N ×A) score matrix.
W (J × J) nonnegative diagonal matrix containing the weights of the J process variables for

synchronization.
X (N × J ×Kn) three-way array containing the measurements of J process variables collected at

Kn different sampling points.

X̃ (N×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref sampling points.

X1 (N1 × J ×Kn1
) three-way array containing the measurements of J process variables measured

at K1 different sampling points in N1 batches with class I and/or II asynchronism.
X2 (N2 × J ×Kn2

) three-way array containing the measurements of J process variables measured
at K2 different sampling points in N2 batches with class III asynchronism.

X3 (N3 × J ×Kn3) three-way array containing the measurements of J process variables measured
at K3 different sampling points in N3 batches with class IV asynchronism.

X4 (N4 × J ×Kn4
) three-way array containing the measurements of J process variables measured

at K4 different sampling points in N4 batches with class III and IV asynchronism.

X̃1 (N1×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref smapling points in N1 batches.

X̃2 (N2×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref sampling points in N2 batches.

X̃3 (N3×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref sampling points in N3 batches.

X̃4 (N4×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref smapling points in N4 batches.

XB (BL × J × Kb) three-way array containing the original measurements of J process variables
measured at Kb sampling points in BL faulty batches, which were isolated in the L iterations
of the iterative batch synchronization/abnormalities detection procedure.
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X̃B (Bl×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref sampling points in Bl faulty batches, which were isolated at the l-th iteration of the
iterative batch synchronization/abnormalities detection procedure.

Xc#1 (N1 × J ×Kn1
) three-way array containing the simulated measurements of J process variables

measured at K1 different sampling points in N1 batches with class III asynchronism.
Xc#2 (N2 × J ×Kn2

) three-way array containing the simulated measurements of J process variables
measured at K2 different sampling points in N2 batches with class IV asynchronism.

Xc#3 (N3 × J ×Kn3) three-way array containing the simulated measurements of J process variables
measured at K3 different sampling points in N3 batches with class II and III asynchronism.

Xc#4 (N4×J ×Kref ) three-way array containing the simulated measurements of J process variables
measured at Kref sampling points in N4 batches with class I asynchronism.

X̃n (Kref × J) matrix containing the synchronized batch trajectories of the n-th batch.
Xn (Kn × J) matrix containing the J batch trajectories measured at Kn sampling points of the

n-th batch.
XG (G× J ×Kg) three-way array containing the measurements of J process variables measured at

KG sampling points in G normal batches.

X̃G (G×J×Kref ) three-way array containing the measurements of J process variables synchronized
at Kref sampling points in G normal batches.

Xref (Kref ×J) matrix containing the J batch trajectories measured at Kref sampling points in the
batch selected as reference for synchronization.
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